Quantcast
Channel: Mathelounge - Alle neuen Fragen
Viewing all articles
Browse latest Browse all 161311

Basis des Kerns einer linearen Abbilddung R^3 -> R bestimmen.

$
0
0

Es sei V = {f ∈ R[X] ∣ deg(f) ≤ 3} der reelle Vektorraum der Polynome vom Grad ≤ 3. Weiter sei für λ ∈ R die lineare Abbildung Eλ ∶ V → R durch Eλ(f) = f(λ) gegeben.
 (a) Berechnen Sie eine Basis von Kern Eλ  . 
 (b) Berechnen Sie für λ ≠ μ eine Basis von Kern Eλ ∩ Kern Eμ  .

Ich habe so viel Zeit an dieser Aufgabe verbracht... Ich brauche Hilfe, denn ich verstehe einfach sie nicht. Wie kann ich Kern(Eλ) bestimmen? Soweit ich die Aufgabe verstehe, ist Kern(Eλ) = { f ∈ V | f(λ) = 0 λ ∈ R}. Das Polynom ist dann f(λ) = a3*x+ a2*x2 + a1x + a0. Die Basis dafür ist (x3,x2,x1,1) => Die Dimension ist 4, denn x3,x2,x1,1 linear unabhängig sind. Jetzt komme ich nicht weiter. Kann jemand es mir erklären?


Viewing all articles
Browse latest Browse all 161311


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>