Ich habe eine Aufgabe aus der AIME 2015 und dazu die Lösung, aber diese verstehe ich nicht ganz :
Point and
are equally spaced on a minor arc of a circle. Points
and
are equally spaced on a minor arc of a second circle with center
as shown in the figure below. The angle
exceeds
by
. Find the degree measure of
.
Let be the center of the circle with
on it.
Let and
.
Ab hier verstehe ich es nicht mehr
is therefore
by way of circle
and
by way of circle
.
is
by way of circle
, and
is
by way of circle
.
This means that:
,
which when simplified yields , or
. Since:
,
So:
is equal to
+
, which equates to
. Plugging in yields
, or