Jedem y∈R≤1 werde eine Zahl a∈R mit der Eigenschaft zugewiesen, dass genau ein x∈R mit y=|a−|1−x||−|x| existiert.
Fallunterscheidung führte zu:
1.1.1: Für a−1+x ≥0 und 0≤x≤1 gilt a=y+1
1.1.2: Für a−1+x <0 und 0≤x≤1 gilt: a =1−2x−y
1.2.1: Für a−1+x ≥0 und x<0 gilt: a= y+1−2x
1.2.2: Für a−1+x <0 und x<0 gilt: a= 1−y
2.1.1: Für a+(1−x) ≥0 und x>1 gilt: a= y−1+2x
2.1.2: Für a+1−x <0 und x>1 gilt: a=−y−1