Quantcast
Channel: Mathelounge - Alle neuen Fragen
Viewing all articles
Browse latest Browse all 161300

Liegen die beiden Geraden in einer Ebene?

$
0
0

Hallo,

ich hoffe ihr könnt mir bei folgender Aufgabe helfen.:

Es sind zwei Geraden mit folgender Gleichung gegeben:

g= (5|1|-1) + R* (4|3|-2)         und        h=(1|5|-3)+ R*(2|0|-1)

Liegen diese beiden Geraden in einer Ebene?

(Die Geradengleichungen sind in Parameterform, R= reelle Zahlen)


Mein Lösungsansatz:

1. Ich habe die Richtungsvektoren auf lineare Unabhängigkeit geprüft:

  a*(4|3|-2)+ b*(2|0|-1)=0  =>  a=b=0  =>Richtungsvektoren sind linear unabhängig  => Geraden haben 

   Schnittpunkt oder sind windschief

2. Ich habe die Geraden gleichgesetzt. Hierbei war ich mir jedoch nicht sicher, wie ich mit R umgehen soll.          (Lässt man es einfach so stehen oder unterscheidet man die beiden R?) Ich habe schließlich das R in        der ersten Geradengleichung mit s und das R in der zweiten Geradengleichung mit t ersetzt. Dann              habe ich folgendes Gleichungssytem aufgestellt:

(I) 5+4s=1+2t      

(II) 1+3s=5        => s=4/3

(III) -1-2s=-3-t    =>t=2/3

in (I):  5-1=2*(2/3) -4*(4/3) <=> 4= -4  =>falsche Aussage

=> Geraden sind windschief und liegen somit nicht in einer Ebene

Ist das so richtig?


Viewing all articles
Browse latest Browse all 161300


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>